CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peat to cleanse toxic waste</td>
<td>1</td>
</tr>
<tr>
<td>Geological research in Pennsylvania, 1990</td>
<td>2</td>
</tr>
<tr>
<td>Areal geology</td>
<td>2</td>
</tr>
<tr>
<td>Economic geology</td>
<td>4</td>
</tr>
<tr>
<td>Engineering geology</td>
<td>7</td>
</tr>
<tr>
<td>Environmental geology</td>
<td>8</td>
</tr>
<tr>
<td>General geology</td>
<td>9</td>
</tr>
<tr>
<td>Geochemistry</td>
<td>10</td>
</tr>
<tr>
<td>Geomorphology</td>
<td>11</td>
</tr>
<tr>
<td>Geophysics</td>
<td>11</td>
</tr>
<tr>
<td>Hydrology</td>
<td>12</td>
</tr>
<tr>
<td>Igneous and metamorphic petrology</td>
<td>13</td>
</tr>
<tr>
<td>Mineralogy</td>
<td>14</td>
</tr>
<tr>
<td>Paleontology</td>
<td>14</td>
</tr>
<tr>
<td>Sedimentology</td>
<td>14</td>
</tr>
<tr>
<td>Stratigraphy</td>
<td>15</td>
</tr>
<tr>
<td>Structural geology</td>
<td>17</td>
</tr>
<tr>
<td>Reports published</td>
<td>18</td>
</tr>
<tr>
<td>In press at the Pennsylvania Geological Survey</td>
<td>32</td>
</tr>
</tbody>
</table>

ON THE COVER:
The Susquehanna River at Dauphin—"a mile wide and a foot deep." Ledges in the river in the near foreground are overturned Mississippian-age Pocono sandstone, which also underlies the linear ridge (with gap) in the background. The middle ground and river ledges are underlain by much less resistant sandstone of the Mauch Chunk Formation, which forms the core of the Cove Mountain syncline outlined by the Pocono sandstone. In the far background (seen through the gap) are Middle Devonian sandstones on Dicks Ridge; on the horizon is Tuscarora Mountain, which is underlain by Silurian-age sandstones. The evenly spaced features in the foreground are the piers of a bridge destroyed by one of the frequent floods of the Susquehanna River. Photograph by T. A. McElroy.

PENNSYLVANIA GEOLOGY is published bimonthly by the Bureau of Topographic and Geologic Survey, Pennsylvania Department of Environmental Resources, P. O. Box 2357, Harrisburg, Pennsylvania 17105-2357. Editors, Christine M. Dodge and Donald M. Hoskins. Articles may be reprinted from this magazine if credit is given to the Topographic and Geologic Survey.

VOL. 21, NO. 4 AUGUST 1990
Peat To Cleanse Toxic Waste

A recent report on the use of peat, an industrial "mineral" found in all 50 states and in most other nations, is the impetus for this preface to the annual report of geologic research in Pennsylvania. Geotimes (July 1990, p. 10) contains a report on current research that suggests "peat may be the cheapest effective material to clean up toxic-waste sites across the country. . . ." If this research on the use of peat is fruitful, new controversy may occur between mineral producers and those desiring to protect our natural environment, and perhaps even among environmental protection specialists themselves.

In the past few years, there has developed a public realization of the need to protect wetlands because of their importance as a habitat for flora and fauna, for recharge to aquifers, and for natural flood control. Our nation has established a goal of no net loss of wetlands; regulatory programs are being developed to assist in achieving this goal. Peat in Pennsylvania occurs in wetlands and is the result of thousands of years of accumulation of plant material in wet, boggy areas that remained after the landscape of parts of northern Pennsylvania was rearranged by huge continental glaciers.

The development and management of a protection policy for Pennsylvania wetlands must include consideration of the implications of the new research on peat. The environmental "value" of peat as a potential medium for cleansing toxic waste will have to be balanced against the environmental "value" of maintaining wetlands for their other beneficial purposes and uses. And each must be weighed against the economic value of peat as a mineral commodity.

The complexity of the earth's natural systems requires that we continually conduct geoscience research and, based on the results of that research, continually modify our understanding of those systems. Only in this way can we manage and regulate our human activities to achieve the highest environmental value and reach our economic goals. With forethought, we may sometimes be able to simultaneously achieve several goals—produce an economic mineral resource and preserve or enhance the environment—thereby creating a greater benefit than by focusing on only one goal.

Donald M. Hoskins
State Geologist
This publication, the thirty-third annual report in its series, contains a listing of all known current geological research in Pennsylvania and all known reports published during the past year pertaining to Pennsylvania geology. Because of the large number of projects reported to us, we editorially condense the descriptions to fit available space.

We have requested that each person estimate an anticipated completion date (ACD) for each project. The anticipated completion date is the author's estimate of the date when the project will be finished; additional time should be allowed for publication of the report.

If you wish to obtain more information on a project described herein, please write directly to the author; most of these projects will not be published by the Pennsylvania Geological Survey inasmuch as most are not Survey-sponsored projects.

The listings are grouped into major categories of research to facilitate your search for information on a particular subject. As with all compilations, there may be omissions; this is unintentional.

Additional copies of this report may be obtained by writing to the Pennsylvania Geological Survey, P. O. Box 2357, Harrisburg, PA 17105-2357.

R. T. FAILL, Pa. Geol. Survey. The Peach Bottom Structure, York County. A 6- to 7-km-wide swath centered on the Peach Bottom slate is being mapped in detail to ascertain the origin of the slate, its relationship to the surrounding Cardiff conglomeratic quartzite and Peters Creek quartzose schist, and the overall structural setting. ACD: March 1991.

P. C. LYONS and W. F. OUTERBRIDGE, U. S. Geol. Survey, and E. S. BELT, Amherst Coll. Late Paleozoic Depositional and Coalification Processes. The project is a regional stratigraphic study of the Middle and Upper Pennsylvanian of the central and northern Appalachian basin using marker beds (marine units, volcanic units (tongsteins), coal beds, flint clays, etc.) for stratigraphic synthesis. The dynamic elements of the basin—sedimentation, tectonism, and coalification—will be examined in relationship to the Alleghanian orogeny. ACD: Sept. 1994.

D. B. MacLACHLAN, Pa. Geol. Survey. Geology of the Freeburg Quadrangle, Snyder County. Mapping of the Tuscarora-to-Catskill section on the nose of the Shade Mountain anticline and in the Northumberland syncline. Mapping is field complete; compilation of surficial units is currently on hold. Maps are scheduled to be placed on open file in 1991.

D. B. MacLACHLAN, Pa. Geol. Survey. Lower Paleozoic Rocks of Platformal to Marginal Facies in the Pennsylvania Piedmont. Field reconnaissance of stratigraphic and lithologic relations of the Chilhowee Group to Middle Cambrian rocks has been conducted from the Susquehanna River eastward through most of Lancaster County and is being continued into Chester and Montgomery Counties. The objective is to clarify the pre-Taconic structure of the Lower Paleozoic carbonate bank edge and identify areas where detailed remapping is urgently required. Preliminary report is scheduled to be placed on open file in late 1990.

P. H. BENOIT AND C. B. SCLAR, Lehigh Univ. *An Electron Microprobe Study of Chromite Deposits of the Pennsylvania-Maryland State Line District with Particular Reference to the “Vein” Chromite of the Woods Mine*. Electron microprobe studies of the “vein” chromite from the Woods chrome mine show that the “vein” chromite has a different chemistry relative to the massive chromite. This difference may be due to the process of “ferrichromite” formation subsequent to emplacement of the “vein” chromite. It is doubtful that the chromite “veins” represent hydrothermal “vein” chromite, and it is also doubtful that the “veins” are igneous injections. ACD: May 1990.

C. H. DODGE, Pa. Geol. Survey. *Coal Resources of Elk County—Part 1, Coal Crop Lines, Mined-Out Areas, and Structure Contours*. Detailed geologic mapping of the coal-bearing strata (Pottsville, Allegheny, and Glenshaw Formations) of Pennsylvanian age. Emphasis is on the major coal-bearing structural basins. A series of maps will be prepared including (1) separate crop-line maps for each principal coal seam showing areas of strip and deep mining, and (2) composite maps showing the crop lines of major and minor coals, as well as structure contours and fold axes. ACD: 1992.

A. D. GLOVER, Pa. Geol. Survey. *Coal Resources of Jefferson County—Part 1, Coal Crop Lines, Mined-Out Areas, and Structure Contours.* Published and unpublished data will be used to prepare a series of maps including (1) separate crop-line maps for each principal coal seam showing areas of strip and deep mining, and (2) composite maps showing the crop lines of all principal coals, as well as structure contours and fold axes. ACD: 1993.

A. D. GLOVER, Pa. Geol. Survey, and W. A. BRAGONIER, Rochester and Pittsburgh Coal Co. *Coal Resources of Armstrong County—Part 1, Coal Crop Lines, Mined-Out Areas, and Structure Contours.* Published and unpublished data will be used to prepare a series of maps including (1) separate crop-line maps for each principal coal seam showing areas of strip and deep mining, and (2) composite maps showing the crop lines of all principal coals, as well as structure contours and fold axes. ACD: 1991.

J. D. INNERS, Pa. Geol. Survey. *Anthracite Geology of the Hazleton Quadrangle, Luzerne, Carbon, and Schuylkill Counties.* Project mainly involves preparation of 1:12,000-scale coal-bed outcrop and structure-contour (Buck Mountain/Mammoth seams) maps of the anthracite basins in the Hazleton area of the Eastern Middle field. A 1:12,000-scale open-file surficial geology map is also being prepared. ACD: Indefinite.

S. T. PEES, Samuel T. Pees and Assoc. Distribution of Cabot Head Formation Sandstones of the Lower Silurian Medina Group, Portion of Northwest Pennsylvania [Crawford Co. and parts of adjacent counties]. Isopachs of Cabot Head Formation sandstones facilitate seeking geological trends and hydrocarbon reserves in this stratigraphic section. Buildups and lean areas become apparent. Medina Group drilling programs can be planned to incorporate these additional reservoirs. ACD: Sept. 1990.

S. T. PEES, Samuel T. Pees and Assoc. Stratigraphy of the Gatesburg Formation and Distribution of Hydrocarbons In It and Older Beds, Northwestern Pennsylvania and Environs. The Gatesburg Formation in northwestern Pennsylvania contains the Rose Run stratigraphic unit of Ohio as one of its members (Upper Sandy Member). Hydrocarbon shows are recorded in all four members and in the underlying Warrior Formation. ACD: Aug. 1990.

J. R. SHAULIS, Pa. Geol. Survey. Coal Resources of Somerset County—Part 1, Coal Crop Lines, Mined-Out Areas, and Structure Contours. Published and unpublished data will be used to prepare a series of maps including (1) separate crop-line maps for each principal coal seam showing areas of strip and deep mining, and (2) composite maps showing the crop lines of all principal coals, as well as structure contours and fold axes. ACD: 1990.

V. W. SKEMA, Pa. Geol. Survey. Coal Resources of Clearfield County—Part 1, Coal Crop Lines, Mined-Out Areas, and Structure Contours. Detailed geologic mapping of the coal-bearing strata of Pennsylvanian age. Emphasis is on the major coal-bearing structural basins. A series of maps will be prepared including (1) separate crop-line maps for each principal coal seam showing areas of strip and deep mining, and (2) composite maps showing the crop lines of major and minor coals, as well as structure contours and fold axes. ACD: 1992 (first phase).

J. V. HAMEL, Hamel Geotechnical Consultants. Bank Instability Along the Monongahela River in Southwestern Pennsylvania. Bank failures are highly site specific and typically involve mass wasting (landslide) and piping (internal erosion) processes that break down.
bank soils, increasing their susceptibility to erosion by the river. ACD: Ongoing.

GREG MOLINDA, U. S. Bur. of Mines. The Effect of Topography on the Stability of Underground Openings. The project involves relating ground control problems in coal mines to surface topography by a statistical analysis of terrain (valley width, relief, valley orientation, depth of cover, valley shape factor) and its proximity to poor-quality roof. The goal is to determine if simple topographic measurements can be used to indicate the approach to unsafe roof conditions. ACD: Ongoing.

A. M. STERNAGLE, Pa. Dept. of Transportation. Instability Problems Associated with the Tuscarora Formation in the Valley and Ridge Province of Central Pennsylvania. Several major highway projects have been constructed in or near Silurian-age Tuscarora sandstone. Construction problems, some unique, occur within this formation. ACD: 1993.

H. C. FRY, Univ. of Pittsburgh at Johnstown, and members of the Greater Johnstown Watershed Assoc. Update of Water Quality of Stony Creek [Somerset and Cambria Cos]. A follow-up of studies made over 20 years ago by the U. S. Environmental Protection Agency and the Pennsylvania Department of Environmental Resources of the water quality of Stony Creek to determine what changes, if any, have occurred in the interim. ACD: Jan. 1991.

A. A. SOCOLOW, Consulting Geologist. *Municipal and Hazardous Wastes Site Evaluations and Screening [eastern half of Pa.]*. Assessment of geologic, hydrologic, and topographic conditions at designated sites, with particular reference to regulations of the Pennsylvania Department of Environmental Resources. ACD: Ongoing.

A. N. KOVEE, U. S. Geol. Survey. *U. S. Geological Survey Radar Acquisition Program [Warren and Williamsport 1:250,000 quads.]*. The acquisition of the Warren and Williamsport 1:250,000 radar image mosaic quadrangles completes side-looking airborne radar coverage of the entire state. A single compilation of radar data for the state is being planned at 1:1,000,000 scale.

FRED BALDASSARE, Pa. Dept. of Environ. Resources, Bur. of Waste Mgmt., and C. D. LAUGHREY, Pa. Geol. Survey. *Stable Carbon (13C/12C) and Hydrogen (Deuterium) Compositions of Methane from Various Sources in Western Pennsylvania.* We are exploring the possibility of identifying methane from various sources (Upper/Lower Devonian gas, coal seams, landfills, methane associated with shallow groundwater, etc.) through stable carbon isotopic analyses. Twenty-three samples have been analyzed to date. ACD: Aug. 1991.

K. R. CERCONE, JOHN TAYLOR, and 1990 geochemistry class, Indiana Univ. of Pa. *Biogeochemistry of Fossil Invertebrates from the Brush Creek Marine Interval* [southeastern Pa.]. As a joint student-faculty research project, a comparative study of shell chemistry is being done on invertebrates from Johnstown and Shelocta outcrops of the Brush Creek. X-ray diffraction, trace-element chemistry, and stable-isotopic ratios are being used to determine the degree of original shell preservation and the process of recrystallization. ACD: June 1990.

C. D. LAUGHREY, Pa. Geol. Survey. *Oil and Gas Source Rocks in Pennsylvania.* The purpose is to identify the oil and gas source rocks in Pennsylvania utilizing data that document the amount, type, and maturation state of organic matter present in the Paleozoic and Mesozoic rocks of the state. ACD: Aug. 1990.

M. L. MORGART, Pa. Dept. of Environ. Resources, Bur. of Oil and Gas Mgmt. *The Effects of Road Spreading of Gas Well Brine on Local Groundwater* [southeastern Pa.]. Water samples are being collected using lysimeters installed along unpaved roads approved by the Commonwealth for brine spreading for dust control. The project goal is to determine the impact of brine spreading on the shallow groundwater environment. ACD: 1991.

M. L. MORGART, Pa. Dept. of Environ. Resources, Bur. of Oil and Gas Mgmt. *The Taylorstown Groundwater Study, Washington County.* Monthly samples were collected from 23 water wells for one year. Trilinear diagrams were used to determine effects of waterflooding for enhanced oil recovery on groundwater. Negative impacts observed were attributed to past improper surface brine discharges and not to waterflooding. ACD: Feb. 1990.
Geomorphology

P. H. DOUGHERTY, Kutztown Univ. Investigation of Tectonic Caves in the Appalachian Province of Pennsylvania. ACD: Ongoing.

Geophysics

K. P. KODAMA and JOHN STAMATAKOS, Lehigh Univ., and ART GOLDSTEIN, Colgate Univ. Effects of Shear Strain on Remanence [Ridge and Valley province in Pa. and Md.]. A detailed rock paleomagnetic and strain study of the Silurian Bloomsburg Formation shows that the previously reported Bloomsburg paleomagnetic pole may have been affected by strain. We derive a low strain pole more consistent with North American APW. ACD: Sept. 1990.

DRU GERMANOSKI, PAMELA BRAUNWELL, and JASON KELSEY, Lafayette Coll. *Possible Influence of Point Source (Industry) and Nonpoint Source (Agricultural) Land Use Activity on Water Quality of the Bushkill Creek in Northampton County.* ACD: May 1990.

D. R. WILLIAMS, U.S. Geol. Survey, and T. A. McELROY, Pa. Geol. Survey. **Geology and Water Resources of Indiana County.** Field work has been completed. Two-, 4-, 24-, and 72-hour pump tests were conducted at the Plumville well nest. All field data have been entered into computer data bases. The geologic map has been compiled, and a basic-data report has been completed. ACD: 1990.

DAWNA YANNACCI, Pa. Geol. Survey, and DANIEL HIPPE and DENNIS LOW, U.S. Geol. Survey. **Aquifer Characteristics of the Rocks of Pennsylvania.** A comprehensive summary of the hydrogeologic characteristics of individual formations and regional systems will be developed using available data. The study will be conducted in three parts, the first covering southeastern Pennsylvania. ACD: Aug. 1990 (first part).

JOSEPH HULL, Uppsala Univ., Sweden, BOB KOTO, L. E. S. I., and JOHN PUFFER, Rutgers Univ. at Newark. **Ordovician Orogenic Alkaline Magmatism in the North-Central Appalachians.** We are studying alkaline basaltic dikes of the Taconic foreland, intruded late in the orogenic history (Group Y magmatism). Current work involves radiometric dating. ACD: 1991.

D. W. VALENTINO, Pa. Geol. Survey. **Metamorphism and Structures of the Tucquan Antiform [Lancaster Co.].** A detailed metamorphic and microstructural study across the Tucquan antiform has been completed. Syndefomational metamorphism is characterized by an episode of greenschist facies retrogression. ACD: 1990.

Igneous and Metamorphic Petrology

JOSEPH HULL, Uppsala Univ., Sweden, BOB KOTO, L. E. S. I., and JOHN PUFFER, Rutgers Univ. at Newark. **Ordovician Orogenic Alkaline Magmatism in the North-Central Appalachians.** We are studying alkaline basaltic dikes of the Taconic foreland, intruded late in the orogenic history (Group Y magmatism). Current work involves radiometric dating. ACD: 1991.
Mineralogy

J. H. DOOLEY, N. J. Geol. Survey, and J. S. DELANEY, Rutgers Univ. at New Brunswick. An Exceptional Monazite Specimen in the Basal Hardyston Formation from Morgan Hill, Pennsylvania [I-78 roadcut]. Scanning electron microscopy/energy dispersive X-ray spectroscopy examination of a 36-mm-diameter euhedral specimen of monazite ((Ce,La,Y,Th)PO₄) reveals light rare-earth-element-rich (predominantly La, Ce, and Nd oxides) exsolution lamellae of cerianite ((Ce,Th)O₂) and xenotime (YPO₄). Other mineral inclusions in the monazite specimen include thorite (ThSiO₄), thorianite (ThO₂), pyrite (FeS₂), and uraninite (UO₂). Metamict zones, which are highly degenerated by radioisotope decay, consist of thorium- and uranium-rich phases. ACD: Completed.

Paleontology

J. F. TAYLOR, Indiana Univ. of Pa., and J. D. LOCH, Univ. of Missouri. Franconian (Middle Upper Cambrian) Trilobite Faunas in the Central Appalachians [south-central Pa. and adjacent Md., W. Va., and northern Va.]. Faunas in the Ore Hill Limestone (Gatesburg Formation) are under study to update the taxonomy, refine correlations, and collect lithologic and range data critical to evaluation of hypotheses regarding Late Cambrian mass extinctions. ACD: Ongoing.

Sedimentology

A. E. GATES, Rutgers Univ. at Newark, and D. W. VALENTINO, Pa. Geol. Survey. Evidence for Rift-Generated Deposits in the Peters
Creek Formation: Precambrian/Cambrian(?) Age [Lancaster Co.]. QFL plots of quartzite compositions for the Peters Creek Formation indicate that the sedimentary provenance is a continental block, transitional to basement uplift. The quartzite compositions and numerous other features are consistent with rift generation. ACD: 1990.

J. T. DUTRO, JR., and JOHN REPETSKI, U. S. Geol. Survey, J. F. TAYLOR, Indiana Univ. of Pa., BOB GANIS, Tethys, Inc., and DAVE HOPKINS, J. E. Baker Co. Cambrian Shelf-Edge Stratigraphy, York Valley. All formations in the West York quadrangle are Early or Middle Cambrian. The time-transgressive nature of the rock units between York and Lancaster Counties supports the model proposed by John Rodgers in 1968. An unconformity below the York County "Conestoga" is not indicated. ACD: 1991.
W. E. EDMUNDS, Consulting Geologist. Lower Pennsylvanian Marine Invertebrate and Plant Fossil Zone, Fulton County. A previously unrecognized Lower Pennsylvanian marine invertebrate and plant fossil zone occurs in the rocks equivalent to the Tumbling Run Member of the Pottsville Formation at least several hundred feet above the Wymps Gap marine zone. It may correlate with the Pocahontas Formation or lower New River Formation of southern West Virginia. ACD: 1991, unless expanded.
graphic data and coal samples for analysis from active coal and clay mines and from drill cores in north-central and western Pennsylvania. The project will provide data for future mapping and regional resource evaluation. ACD: Ongoing.

W. M. GOODMAN, C. E. BRETT, and S. T. LuDUCA, Univ. of Rochester. Stratigraphic Dynamics of the Medial Silurian (Wenlockian), Northern Appalachian Basin [Pa., Md., N. Y., and Ontario]. We have mapped disconformity-bounded sedimentary sequences in the upper Clinton (upper Rose Hill, Keefer, Rochester, basal McKenzie, and equivalent Lizard Creek). This summer we will work near Swatara to study the Clinton-Shawangunk facies transition area. ACD: Fall 1990.

LESLEE OLINGER and A. C. DONALDSON, W. Va. Univ. The Stratigraphy and Sedimentology of the Acadian Clastic Wedge in Southwestern Pennsylvania. Master's thesis will include correlation of well logs into cross sections of the Upper Devonian-Lower Mississippian stratigraphy of southwestern Pennsylvania. Isopach maps of the correlated sand bodies will be used to determine shoreline position and strike/dip trends. ACD: Dec. 1990.

R. C. SMITH, II, and S. W. BERKHEISER, JR., Pa. Geol. Survey, and J. H. WAY, Lock Haven Univ. Lower Devonian and Other Bentonites and Ash Beds [Va. to Quebec]. Bald Hill Bentonite Beds A, B, and C have now been correlated from Monterey, Virginia, to Cherry Valley, New York. These as well as the Upper Ordovician bentonites and Tioga ash beds are associated with the drowning of carbonate platforms by major marine transgressions. ACD: Ongoing.

stratigraphy of the Conestoga Valley. Mildly deformed shelf-marginal carbonates in the Kinzers and Ledger Formations near York, Pennsylvania, are being sampled for trilobites and phosphatic microfossils to establish a standard for correlation of Lower Cambrian strata in the Appalachians. ACD: Summer 1991 (first phase).

J. F. TAYLOR AND K. A. RITLIE, Indiana Univ. of Pa., and J. E. REPETSKI, U. S. Geol. Survey. Upper Cambrian and Lower Ordovician Biostratigraphy in the Central Appalachians [Nittany Arch and Great Valley areas (Pa., N. J., Md., W. Va., and Va.) and Frederick Valley, Md.]. The Stonehenge Limestone and the units above and below it are being systematically sampled to establish a trilobite- and conodont-based biostratigraphy for precise correlation with Trempealeauan and Ibexian strata elsewhere in North America. ACD: Ongoing.

R. T. FAILL, Pa. Geol. Survey. Tectonic Map of Pennsylvania. Map will show locations and names of anticlines, synclines, anticlinoria, structural fronts, thrust, normal, transcurrent, and other faults; basement contours; contours on top of the Onondaga Formation; earthquake epicenters; radiometric dates; nappes and terranes; metamorphic isograds; and other sundry tectonic features. ACD: Nov. 1990.

H. A. POHN, U. S. Geol. Survey, and J. L. COLEMAN, JR., Amoco. Appalachian Structures [central Pa.]. Radar data, seismic-reflection profiles, and field studies have shown the presence of a lateral ramp in central Pennsylvania. A basement connection is suspected because of seismicity under the ramp. ACD: Completed.

SAM ROOT, Coll. of Wooster. Basement Tectonics of the Transylvania Fracture Zone, Pennsylvania and Ohio. Study of Paleozoic reactivation of a Precambrian basement fracture.

REPORTS PUBLISHED

compiled by Caron O'Neil
Pennsylvania Geological Survey

Economic Geology

Berkheiser, S. W., Jr., 1990, Some economic, political, cultural, and recreational aspects of traprock in Penn's woods, in Rose, A. W., and others, leaders, Geochemistry, petrology and economic geology of Mesozoic diabase in Pennsylvania. V. M. Goldschmidt Conference, 1990, Guidebook, Field Trip 1, p. 46-50.

Pees, S. T., 1989, More to Appalachia than the Medina. The American Oil and Gas Reporter, v. 32, no. 11, p. 36-44.

Engineering Geology

Environmental Geology

General Geology

Geochemistry

Rose, A. W., Smith, R. C., Jr., and Berkheiser, S. W., Jr., leaders, 1990, Geochemistry, petrology and economic geology of Mesozoic diabase in Pennsylvania. V. M. Goldschmidt Conference, 1990, Guidebook, Field Trip 1, 50 p.

Smith, R. C., Jr., Berkheiser, S. W., Jr., and Barnes, J. H., 1990, Trace-element geochemistry of mafic rocks of Precambrian through Mesozoic age, southeastern Pennsylvania and adjacent Maryland [abs.]. V. M. Goldschmidt Conference, Baltimore, Md., 1990, Program and Abstracts, p. 82.

Geomorphology

Geophysics

Glacial Geology

History of Geology

Hydrology

Igneous and Metamorphic Petrology

Mineralogy

Paleontology

Sedimentology

Stratigraphy

Structural Geology

IN PRESS AT THE PENNSYLVANIA GEOLOGICAL SURVEY

Becher, A. E., Groundwater resources in and near the anthracite basins of Schuylkill and adjacent counties, Pennsylvania. Water Resource Report 64.

Inners, J. D., Geology and mineral resources of the Allenwood and Milton quadrangles, Union and Northumberland Counties, Pennsylvania. Atlas 144cd.

32
PENNSYLVANIA GEOLOGICAL SURVEY STAFF

Donald M. Hoskins, Bureau Director

DIRECTOR'S OFFICE

717-787-2169

Administrative Services and Library
Shirley J. Barner, Clerical Supervisor
Sandra D. Blust, Librarian
Janet L. Wotring, Administrative Assistant
Connie A. Zimmerman, Clerk Typist

Editing Section
Christine M. Dodge, Section Chief
James H. Dolimpio, Cartographic Draftsman
John G. Kuchinski, Cartographic Supervisor
Caron O'Neil, Geologist

ENVIROMENTAL GEOLOGY DIVISION

717-787-5828
John P. Wilshusen, Division Chief
Loretta Rossum, Clerk Typist

Geotechnical Section
Helen L. Delano, Geologist
William E. Kochanov, Geologist
Garry L. Price, Geologist

Water Well Inventory/Licensing Section
Donna M. Snyder, Section Chief
Mari G. Barnhart, Clerk

GEOLOGIC MAPPING DIVISION

717-787-6029
Jon D. Inners, Division Chief
Jody R. Smith, Clerk Typist

Areal Geology Section
Rodger T. Fail, Geologist
David B. MacLachlan, Geologist
William D. Sevon, Geologist
David W. Valentino, Geologist

Bituminous Coal Section
Albert D. Glover, Section Chief
Patricia F. Buis, Geologist
Clifford H. Dodge, Geologist
Leonard J. Lentz, Geologist
James R. Shaulis, Geologist
Viktoras W. Skema, Geologist

MINERAL RESOURCES DIVISION

717-787-5897
Robert C. Smith, II, Division Chief

John H. Barnes, Geologist
Samuel W. Berkheiser, Jr., Geologist
Leslie T. Chubb, Laboratory Technician

OIL AND GAS GEOLOGY DIVISION

7th Floor, Highland Building
121 South Highland Avenue
Pittsburgh, PA 15206-3988
412-645-7057

John A. Harper, Division Chief

Lajos J. Balogh, Cartographic Draftsman
Cheryl L. Cozart, Descriptive Statistician
Joseph E. Kunz, Clerk Typist
Christopher D. Laughrey, Geologist

Antonette K. Markowski, Geologist (Harrisburg Office)

John Petro, Cartographic Draftsman

IN COOPERATION WITH THE U.S. GEOLOGICAL SURVEY

TOPOGRAPHIC MAPPING
GROUNDWATER-RESOURCE MAPPING
GROUNDWATER LEVELS
FOR
JUNE 1990

EXPLANATION

Above last year
Below last year

Observation well

Above last year
Below last year

Observation well equipped with data-collection platform

X
No data

High

Normal range

Low

Bureau of Topographic and Geologic Survey
Department of Environmental Resources
P. O. Box 2357
Harrisburg, PA 17105-2357

Address Corrections Requested