ROW Mitigation Models

DCNR
Natural Gas Advisory Committee
February 28, 2019

Ryan Szuch
Forest Resource Planning Section

www.dcnr.state.pa.us
Presentation Outline

1. DCNR ROW Application Process
2. Present Compensation Method
3. Potential New Mitigation Models
 a) Human Use Loss
 b) Ecological Service Loss
4. Other State/Agency Examples
5. Questions for Discussion
DCNR ROW Application & Review Process

1. Formal application
2. Pre-Survey Meeting
3. Survey
4. SFER Submission
5. Post-Survey Meeting
6. SFER Approval and ROW Agreement
7. Pre-Construction Meeting
Conditions and Concessions

- Project Need
- Alignment
- Width
- Aquatic Resource Impacts
- Invasives Mng.
- T&E Species
- Restoration

www.dcnr.state.pa.us
License Agreement & Fees

- License (statutory), not easement
- All negotiated conditions included
- Fees (Current Compensation Model):
 - Up-front, lump-sum payment (20-year primary term)
 - Annual payments thereafter
 - Fee schedule based on FERC ROW & Land cost data published in Oil & Gas Journal (2006-2009)
 - Source examined real estate value from surrounding private land
 - + Stumpage
 - + Road use fees
New Potential Mitigation Models

Ecosystem Services
- The physical, chemical, or biological functions that a natural resource provides, thus directly or indirectly providing value to the public
- Examples:
 - Timber products
 - Habitat for wildlife
 - Water purification
 - Carbon sequestration
 - Stormwater retention
 - Air pollutant removal

Human Use Services
- The human uses of natural resources or their functions, providing direct value to the public
- Examples:
 - Fishing
 - Hunting
 - Hiking
 - Boating
 - Wildlife viewing

www.dcnr.state.pa.us
Habitat Equivalency Analysis (HEA)

• HEA is NOT about the cost to restore the project impact

• Restoration is presumed to be required

• HEA is about the compensation for the services lost during the period of impact and recovery
HEA Proven to be Credible & Accepted

- Scientific, peer-reviewed literature

- Dept. of Interior Regulations, and used by USFWS, NOAA, USACE, USFS, USEPA, European Union

- Upheld in several court cases as a valid way to scale compensatory restoration
HEA – Lost Services Illustration

Damages = Lost Ecological Services During this Time Period

What would services have been “but for” the impact?
HEA – Lost Services Model

Service Level (%) vs. Year

Original State
Impact
Return to Original State

Recovery

Years: 2019 to 2039
Gain = Gained Ecological Services During this Time Period

HEA – Gained Services Illustration

Construction/Planting
Establishment
Maturity
HEA – Gained Services Model

Service Level (%)

Year

Construction

Establishment

Maturity
HEA Currency = DSAY

“Service-Acre”
- amount of services provided by one acre

“Service-Acre Year”
- amount of services provided by one acre over the course of a year

“Discounted Service-Acre Year” = “DSAY”
- amount of services provided by one acre over the course of a year, discounted for the time-value of money
HEA Damages Calculation

DSAYs Lost \[\text{\color{red}DSAYs Lost}\] \[\text{\color{red}DSAYs Lost}\]

DSAYs Gained \[\text{\color{blue}DSAYs Gained}\] \[\text{\color{blue}DSAYs Gained}\]

Damages

\text{\textit{cost}} to create X acres of habitat
for DSAYs Gained necessary
to offset DSAYs Lost
HEA Key Data & Assumptions

• **LOSS**
 – Acreage of project impact area
 – Service level loss in each year of analysis
 • Initial impact level
 • Recovery trend
 • Final level
 – Economic discount rate

• **GAIN**
 – Acreage of restoration project area
 – Service level gain in each year of analysis
 • Initial service level
 • Establishment trend
 – Economic discount rate
 – Restoration cost per acre
i-Tree Eco

• i-Tree is a state-of-the-art, peer-reviewed software suite from the USDA Forest Service that provides urban and rural forestry analysis and benefits assessment tools.

• i-Tree Eco is a flexible software application designed to use data collected in the field along with air pollution and meteorological data to quantify forest structure, environmental effects, and value.

www.dcnr.state.pa.us
Field Data

Census or Plots

- Species
- DBH
- Land use
- Tree height
- Crown measurements
Ecological Service Outputs

Services
• Avoided Runoff
• Carbon Storage
• Carbon Sequestration
• Pollution Removal

Outputs
• Total annual amount
 – tons of C
 – Cubic ft / yr
 – Lbs / yr
• Unit values
• Total Annual Values ($)
Human Use Impact Analysis

- **Goal** = to measure the economic value of recreational opportunities lost
 - e.g., lost hunting trips
 - e.g., lost hiking days

- **Key Concepts/Tools**
 - Recreation Use Value: the value of recreation activity beyond what must be spent to enjoy it (synonymous with Consumer Surplus value)
 - Benefit Transfer Method: estimating values by transferring available information from studies in similar location/context (substitute for primary research)
Human Use Impact Analysis

• Key Data and Assumptions
 – Visitation numbers to forest/park
 – % of visitors likely to visit impacted project area
 – % of days/trips lost due to project
 – Recreation Use Value per day/trip

 • Benefit Transfer Analysis data sources
 – Delaware Water Gap study (2011)
 – USGS northeast region data (2004)
NPS - Susquehanna-Roseland
Delaware Water Gap and App. Trail

2012

Human Use
• Consumer Surplus and Benefit Transfer Analysis

Ecological Services
• HEA
• Impact Types:
 – Permanently lost
 – Cleared and Recovering
 – Maintained Scrub-Shrub

• Habitat Types:
 – Wetland
 – Upland
 – Floodplain
Other HEA Applications

• Gateway West Transmission Line – Dept. of Interior (Wyoming, Idaho – 2012)
• Liquified natural gas pipeline (Oregon – 2012)
 * Desvousges, et al. 2018
Questions

• Experience with use of these valuation methods?
• Strengths and weaknesses of methods?
• What data seems critical for us to gather?
• What assumptions seem critical or potentially subject to scrutiny?